Gustavo Revel, Diego M. Alonso, Jorge L. Moiola
En este trabajo se estudia la dinámica de un circuito eléctrico resonante. Se presentan varios diagramas de bifurcaciones que pueden asociarse a la forma normal truncada de la singularidad de Hopf doble. Las curvas de bifurcaciones se obtienen a través de continuaciones numéricas. Se muestra la existencia de soluciones cuasiperiódicas con dos componentes frecuenciales (toros 2D), y tres componentes (toros 3D). Estas últimas, en cierta forma, están próximas en complejidad a soluciones caóticas. El análisis se complementa con simulaciones temporales y una discusión sobre la interacción de los autovalores del sistema linealizado al variar uno de los parámetros .
© 2001-2024 Fundación Dialnet · Todos los derechos reservados