Raúl Pino Díez, David de la Fuente García, José Parreño Fernández, Paolo Priore Moreno
En los últimos tiempos se ha comprobado un aumento del interés en la aplicación de las Redes Neuronales Artificiales a la previsión de series temporales, intentando explotar las indudables ventajas de estas herramientas. En este artículo se calculan previsiones de series no estacionarias o no invertibles, que presentan dificultades cuando se intentan pronosticar utilizando la metodología ARIMA de Box-Jenkins. Las ventajas de la aplicación de redes neuronales se aprecian con más claridad, cuando se trata de pronosticar sistemas multivariantes no estacionarios
© 2001-2025 Fundación Dialnet · Todos los derechos reservados