Locally analytically, any isolated double point occurs as a double cover of a smooth surface. It can be desingularized explicitly via the canonical resolution, as it is very well-known. In this paper we explicitly compute the fundamental cycle of both the canonical and minimal resolution of a double point singularity and we classify those for which the fundamental cycle differs from the fiber cycle. Moreover we compute the conditions that a double point singularity imposes to pluricanonical systems.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados