Ayuda
Ir al contenido

Dialnet


The automorphism group of an affine quadric

  • Autores: Burt Totaro
  • Localización: Mathematical proceedings of the Cambridge Philosophical Society, ISSN 0305-0041, Vol. 143, Nº 1, 2007, págs. 1-8
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We determine the automorphism group for a large class of affine quadrics over a field, viewed as affine algebraic varieties. The proof uses a fundamental theorem of Karpenko's in the theory of quadratic forms [13], along with some useful arguments of birational geometry. In particular, we find that the automorphism group of the n-sphere {x02+···+xn2=1} over the real numbers is just the orthogonal group O(n+1) whenever n is a power of 2. It is not known whether the same is true for arbitrary n. This result is reminiscent of Wood's theorem that when n is a power of 2, every real polynomial mapping from the n-sphere to a lower-dimensional sphere is constant [22].


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno