Walley�s imprecise Dirichlet model (IDM) for categorical i.i.d. data extends the classical Dirichlet model to a set of priors. It overcomes several fundamental problems which other approaches to uncertainty suffer from. Yet, to be useful in practice, one needs efficient ways for computing the imprecise = robust sets or intervals. The main objective of this work is to derive exact, conservative, and approximate, robust and credible interval estimates under the IDM for a large class of statistical estimators, including the entropy and mutual information.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados