Ayuda
Ir al contenido

Dialnet


On the mixed Cauchy problem with data on singular conics

    1. [1] University of California, San Diego

      University of California, San Diego

      Estados Unidos

    2. [2] Universidad de La Rioja

      Universidad de La Rioja

      Logroño, España

  • Localización: Journal of the London Mathematical Society, ISSN 0024-6107, Vol. 78, Nº 1, 2008, págs. 248-266
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We consider a problem of mixed Cauchy type for certain holomorphic partial differential operators with the principal part Q2p(D) essentially being the (complex) Laplace operator to a power, p. We provide inital data on a singular conic divisor given by P = 0, where P is a homogeneous polynomial of degree 2p. We show that this problem is uniquely solvable if the polynomial P is elliptic, in a certain sense, with respect to the principal part Q2p(D).


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno