Ayuda
Ir al contenido

Dialnet


A criterion for a monomial in P(3) to be hit

  • Autores: A. S. Janfada
  • Localización: Mathematical proceedings of the Cambridge Philosophical Society, ISSN 0305-0041, Vol. 145, Nº 3, 2008, págs. 587-599
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let P(n) = [x1, . . ., xn] = d=0Pd(n) be the polynomial algebra viewed as a graded left module over the Steenrod algebra at the prime 2. The grading is by the degree of the homogeneous polynomials Pd(n) of degree d in the n variables x1, . . ., xn. The algebra P(n) realizes the cohomology of the product of n copies of infinite real projective space. We recall that a homogeneous element f of grading d in a graded left -module M is hit if there is a finite sum f = Si Sqi(hi), called a hit equation, where the pre-images hi M have grading strictly less than d and the Sqi, called the Steenrod squares, generate . One of the important parts of the hit problem is to check whether a given polynomial in M is hit or not. In this article we study this problem in the 3-variable case.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno