Ayuda
Ir al contenido

Dialnet


Resumen de Exponential Runge-Kutta methods for the Schrödinger equation

Guillaume Dujardin

  • We consider exponential Runge�Kutta methods of collocation type, and use them to solve linear and semi-linear Schrödinger Cauchy problems on the d-dimensional torus. We prove that in both cases (linear and non-linear) and with suitable assumptions, s-stage methods are of order s and we give sufficient conditions to achieve orders s+1 and s+2. We show and explain the effects of resonant time steps that occur when solving linear Schrödinger problems on a finite time interval with such methods. This work is inspired by [M. Hochbruck, A. Ostermann, Exponential Runge�Kutta methods for parabolic problems, Appl. Numer. Math. 53 (2�4) (2005) 323-339], where exponential Runge�Kutta methods of collocation type are applied to parabolic Cauchy problems. We compare our results with those obtained for parabolic problems and provide numerical experiments for illustration.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus