Let A be a matrix such that the diagonal matrix D with the same diagonal as A is invertible. It is well known that if (1) A satisfies the Sassenfeld condition then its Gauss-Seidel scheme is convergent, and (2) if D-1A certifies certain classical diagonal dominance conditions then the Jacobi iterations for A are convergent. In this paper we generalize the second result and extend the first result to irreducible matrices satisfying a weak Sassenfeld condition.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados