Los microscopios de barrido se han convertido en las manos y los �ojos� de experimentadores de nuestro siglo, son herramientas necesarias en los laboratorios de educación e investigación para la caracterización a nanoescalas. El presente artículo presenta las modificaciones en la implementación electrónica (caracterización de los piezoeléctricos y sistema de barrido) y mecánica (diseño de un sistema de antivibración) de un microscopio de barrido de efecto túnel que han permitido visualización y modificación de superficies a nanoescala. Se describe una metodología para la correcta visualización y caracterización de superficies usando el instrumento implementado, alcanzando la cuantificación bidimensional de características de hasta 1300nm2, con resolución ~15nm. Esta metodología, determinada experimentalmente, tiene en cuenta parámetros críticos para la estabilización de la corriente túnel, como lo son la velocidad de barrido y las geometrías y dimensiones de las agujas del microscopio. La versatilidad del microscopio permite modificar y visualizar los defectos introducidos en muestras de HOPG al aplicar voltajes entre la punta del microscopio y la muestra. Los resultados aquí descritos permiten presentar fácilmente los conceptos de barrido topográfico y litografía.
Sweeping/scanning microscopes have become an experimental scientist�s hands and eyes in this century; they have become a powerful and necessary tool for nanoscale characterisation in education and research laboratories all around the world. This article presents the modifications made in the mechanical (isolation or designing an anti-vibration system) and electrical (piezoelectric and scanning system characterisation) implementation of a scanning tunnelling microscope (STM), thereby allowing nanoscale surfaces to be visualised and modified. A methodology for visualising and characterising surfaces using the aforementioned instrument is described, bidimensional quantification of up to 1,300 nm2, with ~15 nm resolution being reached. This experimental methodology took critical parameters for tunnelling current stability into account, such as scanning speed and microscope tip geometry and dimensions. This microscope�s versatility allowed defects in highly oriented pyrolytic graphite (HOPG) samples to be modified and visualised by applying a voltage between the tip and the sample. The concepts of topography scanning and lithography can be easily understood by using the instrument implemented here.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados