Andrés David Restrepo Girón, Humberto Loaiza Correa
Se expone un nuevo algoritmo de procesamiento de imágenes para detectar y corregir píxeles anómalos que resalten de manera individual entre sus vecinos en imágenes de una secuencia térmica obtenida a partir de un procedimiento de termografía activa, sin afectar la apariencia global de cada imagen, como ocurre al emplear una estrategia clásica de filtrado espacial. Como resultado principal de este filtrado selectivo, se detectan y reemplazan en un alto porcentaje aquellos píxeles defectuosos de fabricación o por el uso continuo del dispositivo CCD de la cámara infrarroja, lo cual reduce el riesgo de malas interpretaciones en el análisis posterior.
Para el desarrollo y prueba del algoritmo propuesto se utilizaron secuencias de video tomadas con una cámara Cincinnati Electronics de indio-antimonio (InSb) para inspeccionar láminas de CFRP (plástico reforzado con fibra de carbono) mediante la técnica de termografía activa. Los resultados del algoritmo se comparan con una lista de píxeles defectuosos dada por el fabricante de la cámara, arrojando un porcentaje de coincidencia de alrededor del 70%. El presente trabajo toma relevancia al considerar que en la literatura científica se encuentran muy pocos estudios en este campo, centrándose la mayoría en el preprocesamiento de imágenes astronómicas; además, en Colombia se está en una etapa de introducción creciente de técnicas de evaluación no destructiva por termografía (ENDT) en amplios sectores industriales que incluyen generación y transmisión de energía, ingenios azucareros y aeronáutica militar, entre otros.
An image processing algorithm detects and replaces abnormal pixels individually, highlighting them amongst their neighbours in a sequence of thermal images without affecting overall texture, like classical filtering does. Bad pixels from manufacture or constant use of a CCD device in an IR camera are thus detected and replaced with a very good success rate, thereby reducing the risk of bad interpretation. Some thermal sequences from CFRP plates, taken by a Cincinnati Electronics InSb IR camera, were used for developing and testing this algorithm. The results were compared to a detailed list of bad pixels given by the manufacturer (about 70% coincidence). This work becomes relevant considering that the number of papers on this subject is low; most of them talk about astronomical image pre-processing. Moreover, thermographic non-destructive testing (TNDT) techniques are gaining popularity in Colombia at introductory levels in industrial sectors such as energy generation and transmission, sugar production and military aeronautics.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados