Ayuda
Ir al contenido

Dialnet


Resumen de Influence of Towing Force Magnitude on the Kinematics of Supramaximal Sprinting

David A. Clark, Michelle B. Sabick, Ronald Pfeiffer, Seth M. Kuhlman, Nicole A. Knigge, Kevin G. Shea

  • The purpose of this study was to determine the influence of towing force magnitude on the kinematics of supramaximal sprinting. Ten high school and college-age track and field athletes (6 men, 4 women) ran 60-m maximal sprints under 5 different conditions: Nontowed, Tow A (2.0% body weight [BW]), Tow B (2.8% BW), Tow C (3.8% BW), and Tow D (4.7% BW). Three-dimensional kinematics of a 4-segment model of the right side of the body were collected starting at the 35-m point of the trial using high-speed (250 Hz) optical cameras. Significant differences (p < 0.05) were observed in stride length and horizontal velocity of the center of mass during Tow C and Tow D. For Tow D, a significant increase (p = 0.046) in the distance from the center of mass to the foot at touchdown was also observed. Contact time decreased significantly in all towing conditions (p < 0.01), whereas stride rate increased only slightly (<2.0%) under towed conditions. There were no significant changes in joint or segment angles at touchdown, with the exception of a significant decrease (p = 0.044) in the flexion/extension angle at the hip during the Tow D condition. We conclude that towing force magnitude does influence the kinematics of supramaximal running and that potentially negative training effects may arise from towing individuals with a force in excess of 3.8% BW. Therefore, we suggest that coaches and practitioners adjust towing force magnitude for each individual and avoid using towing forces in excess of 3.8% of the athlete's BW.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus