We investigate the Whyburn and weakly Whyburn property in the class of P-spaces, that is spaces where every countable intersection of open sets is open. We construct examples of non-weakly Whyburn P-spaces of size continuum, thus giving a negative answer under CH to a question of Pelant, Tkachenko, Tkachuk and Wilson. In addition, we show that the weak Kurepa Hypothesis (an assumption weaker than CH) implies the existence of a non-weakly Whyburn P-space of size aleph2. Finally, we consider the behavior of the above-mentioned properties under products; we show in particular that the product of a Lindelöf weakly Whyburn P-space and a Lindelöf Whyburn P-space is weakly Whyburn, and we give a consistent example of a non-Whyburn product of two Lindelof Whyburn P-spaces.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados