In this paper, we use quartic B-spline to construct an approximating function to agree with the given integral values of a univariate real-valued function over the same intervals. It is called integro quartic spline interpolation. Our interpolation method is new and easy to implement. Moreover, it can work successfully even without any boundary conditions.
The interpolation errors are studied. The super convergence (sixth order and fourth order, respectively) in approximating function values and second-order derivative values at the knots is proved. Numerical examples illustrate that our method is very effective and our integro-interpolating quartic spline has higher approximation ability than others.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados