Ayuda
Ir al contenido

Dialnet


Community detection using spectral custering on sparse geosocial data

  • Autores: Yves van Gennip, Blake Hunter, Raymond Ahn, Peter Elliott, Kyle Luh, Megan Halvorson, Shannon Reis, Matthew Valasik, James Wo, George E. Tita, Andrea L. Bertozzi, P. Jeffrey Brantingham
  • Localización: Siam journal on applied mathematics, ISSN 0036-1399, Vol. 73, Nº 1, 2013, págs. 67-83
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this article we identify social communities among gang members in the Hollenbeck policing district in Los Angeles, based on sparse observations of a combination of social interactions and geographic locations of the individuals. This information, coming from Los Angeles Police Department (LAPD) Field Interview cards, is used to construct a similarity graph for the individuals. We use spectral clustering to identify clusters in the graph, corresponding to communities in Hollenbeck, and compare these with the LAPD's knowledge of the individuals' gang membership. We discuss different ways of encoding the geosocial information using a graph structure and the influence on the resulting clusterings. Finally we analyze the robustness of this technique with respect to noisy and incomplete data, thereby providing suggestions about the relative importance of quantity versus quality of collected data


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno