Se presenta un método libre de mallas con derivadas difusas y estabilización por penalización. Un análisis de error para la aproximación de la solución de una ecuación elíptica general en múltiples dimensiones, con condiciones de frontera tipo Neumann es desarrollado. Resultados numéricos y teóricos muestran que el error de aproximación y la velocidad de convergencia son mejores que en el método de elementos difusos.
A meshfree method with diffuse derivatives and a penalty stabilization is developed.
An error analysis for the approximation of the solution of a general elliptic differential equation, in several dimensions, with Neumann boundary conditions is provided. Theoretical and numerical results show that the approximation error and the convergence rate are better than the diffuse element method.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados