Ayuda
Ir al contenido

Dialnet


A new structure-preserving method for quaternion Hermitian eigenvalue problems

  • Autores: Zhigang Jia, Musheng Wei, Sitao Ling
  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Vol. 239, Nº 1, 2013, págs. 12-24
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper we propose a novel structure-preserving algorithm for solving the right eigenvalue problem of quaternion Hermitian matrices. The algorithm is based on the structure-preserving tridiagonalization of the real counterpart for quaternion Hermitian matrices by applying orthogonal JRS-symplectic matrices. The algorithm is numerically stable because we use orthogonal transformations; the algorithm is very efficient, it costs about a quarter arithmetical operations, and a quarter to one-eighth CPU times, comparing with standard general-purpose algorithms. Numerical experiments are provided to demonstrate the efficiency of the structure-preserving algorithm.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno