The insecticidal efficacy of Bt cotton under different environments has generated controversy in recent years. The objective of this study was to investigate possible reasons of the conflicting results caused by temperature stress. Two different types of Bt transgenic cotton cultivars (a Bt cultivar, Sikang1, and an hybrid Bt cultivar, Sikang3) were selected. The plants of the two Bt cultivars were exposed to high temperature (37°C), low temperature (18°C), and the control (27°C) for short (24 h) and long (48 h) periods of stress at peak boll stage, and then moved to the glasshouse where the control plants were maintained. The results showed that the leaf insecticidal toxin content fully recovered within 24 h to the level of control after the end of short duration high-temperature treatment, and recovered mostly within 48 h of the termination of 24 h low-temperature stress. Under long duration high temperature treatment the Bt toxin content required longer recovery periods (48 and 72 h for Sikang3 and Sikang1, respectively) to reach the control level. The Bt protein content only recovered partially at 96 h after the end of the long-duration low-temperature stress, and the concentrations of the Cry1Ac protein were 74% and 77% of the corresponding control for Sikang1 and Sikang3, respectively. The different recovery and increase slowly of the leaf nitrogen metabolic rates after ceasing the heat and cold stress may be possible reason for the above difference. In summary, the duration and type of temperature (cold or heat) stress may cause different Bt insecticidal protein recovery rate due to different recovery rate of enzymes.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados