Ayuda
Ir al contenido

Dialnet


Resumen de Comparison of High-Resolution Melting Analysis, TaqMan Allelic Discrimination Assay, and Sanger Sequencing for Clopidogrel Efficacy Genotyping in Routine Molecular Diagnostics

Lina Zhang, Guanglin Cui, Zongzhe Li, Haoran Wang, Hu Ding, Dao Wen Wang

  • Clopidogrel, as a routine antiplatelet drug, is widely used in patients to reduce cardiovascular events following percutaneous coronary intervention. Because of genetic variation, patients undergoing percutaneous coronary intervention show differing responses to clopidogrel therapy. Recently, five single nucleotide polymorphisms (SNPs) within CYP2C19 (rs4244285, rs4986893, rs12248560), ABCB1 (rs1045642), and ITGB3 (rs5918) were identified that contribute prominently to variability in response to clopidogrel. Given that Sanger sequencing is labor intensive and time consuming, rapid genotyping methods for SNP detection are urgently required before clopidogrel therapy. Accordingly, we developed a high-resolution melting analysis (HRMA) and TaqMan allelic discrimination assay (TaqMan) to genotype those five SNPs, and compared these two assays with Sanger sequencing on accuracy of genotyping as well as operational characteristics. These two assays showed high accuracy (0.995, 95% CI 0.991 to 0.998 for HRMA; 0.997, 95% CI 0.994 to 0.999 for TaqMan, respectively), sensitivity (0.996, 95% CI 0.989 to 1.002 for HRMA; 0.998, 95% CI 0.993 to 1.002 for TaqMan, respectively), and specificity (0.995, 95% CI 0.991 to 0.999 for HRMA; 0.996, 95% CI 0.993 to 1.000 for TaqMan, respectively). Our study indicates that HRMA and TaqMan are easier to operate and obviously faster than Sanger sequencing. In conclusion, HRMA and TaqMan are rapid, convenient, and reliable assays for clopidogrel efficacy genotyping.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus