Ayuda
Ir al contenido

Dialnet


Estimating Dynamic Equilibrium Models with Stochastic Volatility

  • Autores: Jesús Fernández Villaverde, Pablo Guerrón Quintana, Juan F. Rubio Ramírez
  • Localización: Documentos de trabajo ( FEDEA ), ISSN 1696-7496, Nº. 23, 2013, págs. 1-73
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We propose a novel method to estimate dynamic equilibrium models with stochastic volatility. First, we characterize the properties of the solution to this class of models. Second, we take advantage of the results about the structure of the solution to build a sequential Monte Carlo algorithm to evaluate the likelihood function of the model. The approach, which exploits the profusion of shocks in stochastic volatility models, is versatile and computationally tractable even in large-scale models, such as those often employed by policy-making institutions. As an application, we use our algorithm and Bayesian methods to estimate a business cycle model of the U.S. economy with both stochastic volatility and parameter drifting in monetary policy. Our application shows the importance of stochastic volatility in accounting for the dynamics of the data.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno