Conventional ferroelectric perovskite type ceramics have dielectric, piezoelectric and elastic properties which depend on grain size and on domain configuration. Very fine grained ceramic is not splitted in domains. This causes strong elastic stress fields in the grains which counteract ferroelectricity. Tetragonal fine grained ceramic has a simple laminar domain structure and high elastic stress fields inside the grain and at the grain boundaries. These stress fields cause very high permittivity. In coarse grained ceramics the stress fields inside the grain are eliminated by a three-dimensional network of domains. In fine and in coarse grained ceramics the domain walls contribute considerably to the dielectric, piezoelectric and elastic constants at frequencies below a relaxation frecuency which is between 200 and 1000 MHz. At low temperatures, however, the domain wall contributions freeze in. Acceptor doping lowers the domain wall contributions and shifts the relaxation frequency to higher values. The properties of the conventional ceramics will be compared wiht properties of thin firms and with properties of relaxor ceramics.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados