Ayuda
Ir al contenido

Dialnet


Resumen de The maximum of a symmetric next neighbor walk on the nonnegative integers

Ora E. Percus, Jerome K. Percus

  • We consider a one-dimensional discrete symmetric random walk with a reflecting boundary at the origin. Generating functions are found for the two-dimensional probability distribution P{Sn = x, max1=j =nSn = a} of being at position x after n steps, while the maximal location that the walker has achieved during these n steps is a. We also obtain the familiar (marginal) one-dimensional distribution for Sn = x, but more importantly that for max1=j=n Sj = a asymptotically at fixed a ²/n. We are able to compute and compare the expectations and variances of the two one-dimensional distributions, finding that they have qualitatively similar forms, but differ quantitatively in the anticipated fashion


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus