Ayuda
Ir al contenido

Dialnet


Adaptive Markov chain Monte Carlo sampling and estimation in Mata

  • Autores: Matthew J. Baker
  • Localización: The Stata journal, ISSN 1536-867X, Vol. 14, Nº. 3, 2014, págs. 623-661
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • I describe algorithms for drawing from distributions using adaptive Markov chain Monte Carlo (MCMC) methods; I introduce a Mata function for performing adaptive MCMC, amcmc(); and I present a suite of functions, amcmc_*(), that allows an alternative implementation of adaptive MCMC. amcmc() and amcmc_*() can be used with models set up to work with Mata's moptimize() (see [M-5] moptimize()) or optimize() (see [M-5] optimize()) or with standalone functions. To show how the routines can be used in estimation problems, I give two examples of what Chernozhukov and Hong (2003, Journal of Econometrics 115: 293�346) refer to as quasi-Bayesian or Laplace-type estimators�simulationbased estimators using MCMC sampling. In the first example, I illustrate basic ideas and show how a simple linear model can be fit by simulation. In the next example, I describe simulation-based estimation of a censored quantile regression model following Powell (1986, Journal of Econometrics 32: 143�155); the discussion describes the workings of the command mcmccqreg. I also present an example of how the routines can be used to draw from distributions without a normalizing constant and used in Bayesian estimation of a mixed logit model. This discussion introduces the command bayesmixedlogit.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno