Ayuda
Ir al contenido

Dialnet


Modeling the Financial Distress of Microenterprise Start-ups Using Support Vector Machines: a case study.

  • Autores: Antonio J. Blanco Oliver, Rafael Pino Mejías, Juan Lara Rubio
  • Localización: Innovar: revista de ciencias administrativas y sociales, ISSN 0121-5051, Vol. 24, Nº Extra 54 (diciembre), 2014 (Ejemplar dedicado a: Innovación y Emprendimiento), págs. 153-168
  • Idioma: inglés
  • Enlaces
  • Resumen
    • español

      A pesar del destacado papel que desempeña el microemprendimiento en el desarrollo económico y de la alta tasa de quiebra que tienen las nuevas microempresas en sus primeros años de vida, muy pocos estúdios han diseñado un modelo para detectar las dificultades financieras de los microemprendedores Además, debido a la ausencia de investigaciones, no se conoce nada acerca de si la información no financiera y las técnicas estadísticas no paramétricas mejoran la capacidad predictiva de estos modelos. Por tanto, este artículo proporciona un innovador modelo para detectar las dificultades financieras específicamente diseñado para las microempresas de nueva creación mediante el uso de máquinas de soporte vectorial (MSV) y empleando variables financieras, no financieras y macroeconómicas. Basados en una muestra de casi 5.500 de una Institución Mi-crofinanciera (IMF) peruana, nuestros hallazgos muestran que la introducción de información no financiera relacionada con la zona en la que el emprendedor vive y localiza su negocio, la duración de la relación IMF-emprendedor, el número de préstamos concedidos por la IMF en el último año, el destino del préstamo y la opinión de los expertos sobre la probabilidad de que la nueva microempresa experimente problemas financieros, aumentan de manera significativa la precisión de nuestro modelo de detección de dificultades financieras. Además, los resultados revelan que los modelos construidos usando MVS superan los obtenidos por aquellos modelos que emplean el tradicional análisis de regresión logística.

    • English

      Despite the leading role that micro-entrepreneurship plays in economic development, and the high failure rate of microenterprise start-ups in their early years, very few studies have designed financial distress models to detect the financial problems of micro-entrepreneurs. Moreover, due to a lack of research, nothing is known about whether non-financial information and non-parametric statistical techniques improve the predictive capacity of these models. Therefore, this paper provides an innovative financial distress model specifically designed for microenterprise startups via support vector machines (SVMs) that employs financial, non-financial, and macroeconomic variables. Based on a sample of almost 5,500 micro-entrepreneurs from a Peruvian Microfinance Institution (MFI), our findings show that the introduction of non-financial information related to the zone in which the entrepreneurs live and situate their business, the duration of the MFI-entrepre-neur relationship, the number of loans granted by the MFI in the last year, the loan destination, and the opinion of experts on the probability that microenterprise start-ups may experience financial problems, significantly increases the accuracy performance of our financial distress model. Furthermore, the results reveal that the models that use SVMs outperform those which employ traditional logistic regression (LR) analysis.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno