Ayuda
Ir al contenido

Dialnet


Novel scaling limits for critical inhomogeneous random graphs

  • Autores: Shankar Bhamidi, Remco van der Hofstad, Johan S. H. Van Leeuwaarden
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 40, Nº. 6, 2012, págs. 2299-2361
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We find scaling limits for the sizes of the largest components at criticality for rank-1 inhomogeneous random graphs with power-law degrees with power-law exponent τ. We investigate the case where τ∈(3,4), so that the degrees have finite variance but infinite third moment. The sizes of the largest clusters, rescaled by n−(τ−2)/(τ−1), converge to hitting times of a “thinned” Lévy process, a special case of the general multiplicative coalescents studied by Aldous [Ann. Probab. 25 (1997) 812–854] and Aldous and Limic [Electron. J. Probab. 3 (1998) 1–59].

      Our results should be contrasted to the case τ>4, so that the third moment is finite. There, instead, the sizes of the components rescaled by n−2/3 converge to the excursion lengths of an inhomogeneous Brownian motion, as proved in Aldous [Ann. Probab. 25 (1997) 812–854] for the Erdős–Rényi random graph and extended to the present setting in Bhamidi, van der Hofstad and van Leeuwaarden [Electron. J. Probab. 15 (2010) 1682–1703] and Turova [(2009) Preprint].


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno