Ayuda
Ir al contenido

Dialnet


Brownian limits, local limits and variance asymptotics for convex hulls in the ball

  • Autores: Pierre Calka, Tomasz Schreiber, J.E. Yukich
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 41, Nº. 1, 2013, págs. 50-108
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Schreiber and Yukich [Ann. Probab. 36 (2008) 363–396] establish an asymptotic representation for random convex polytope geometry in the unit ball Bd, d≥2, in terms of the general theory of stabilizing functionals of Poisson point processes as well as in terms of generalized paraboloid growth processes. This paper further exploits this connection, introducing also a dual object termed the paraboloid hull process. Via these growth processes we establish local functional limit theorems for the properly scaled radius-vector and support functions of convex polytopes generated by high-density Poisson samples. We show that direct methods lead to explicit asymptotic expressions for the fidis of the properly scaled radius-vector and support functions. Generalized paraboloid growth processes, coupled with general techniques of stabilization theory, yield Brownian sheet limits for the defect volume and mean width functionals. Finally we provide explicit variance asymptotics and central limit theorems for the k-face and intrinsic volume functionals.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno