Ayuda
Ir al contenido

Dialnet


A multivariate Gnedenko law of large numbers

  • Autores: Daniel Fresen
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 41, Nº. 5, 2013, págs. 3051-3080
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We show that the convex hull of a large i.i.d. sample from an absolutely continuous log-concave distribution approximates a predetermined convex body in the logarithmic Hausdorff distance and in the Banach–Mazur distance. For log-concave distributions that decay super-exponentially, we also have approximation in the Hausdorff distance. These results are multivariate versions of the Gnedenko law of large numbers, which guarantees concentration of the maximum and minimum in the one-dimensional case.

      We provide quantitative bounds in terms of the number of points and the dimension of the ambient space.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno