Ayuda
Ir al contenido

Dialnet


The upper nilradical and Jacobson radical of semigroup graded rings

    1. [1] Brigham Young University

      Brigham Young University

      Estados Unidos

    2. [2] Warsaw University of Technology

      Warsaw University of Technology

      Warszawa, Polonia

    3. [3] Bialystok University of Technology

      Bialystok University of Technology

      Białystok, Polonia

  • Localización: Journal of pure and applied algebra, ISSN 0022-4049, Vol. 219, Nº 4 ((April 2015) ), 2015, págs. 1082-1094
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Given a semigroup S , we prove that if the upper nilradical Nil⁎(R)Nil⁎(R) is homogeneous whenever R is an S-graded ring, then the semigroup S must be cancelative and torsion-free. In case S is commutative the converse is true. Analogs of these results are established for other radicals and ideals. We also describe a large class of semigroups S with the property that whenever R is a Jacobson radical ring graded by S, then every homogeneous subring of R is also a Jacobson radical ring. These results partially answer two questions of Smoktunowicz. Examples are given delimiting the proof techniques.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno