Ayuda
Ir al contenido

Dialnet


A stochastic representation for mean curvature type geometric flows

    1. [1] Koç University

      Koç University

      Turquía

    2. [2] Centre de Recherche en Economie et Statistique
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 31, Nº. 3, 2003, págs. 1145-1165
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • A smooth solution {Γ(t)}t∈[0,T]⊂\Rd of a parabolic geometric flow is characterized as the reachability set of a stochastic target problem. In this control problem the controller tries to steer the state process into a given deterministic set \Tc with probability one. The reachability set, V(t), for the target problem is the set of all initial data x from which the state process \xx(t)∈\Tc for some control process ν. This representation is proved by studying the squared distance function to Γ(t). For the codimension k mean curvature flow, the state process is dX(t)=2√PdW(t), where W(t) is a d-dimensional Brownian motion, and the control P is any projection matrix onto a (d−k)-dimensional plane. Smooth solutions of the inverse mean curvature flow and a discussion of non smooth solutions are also given.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno