Ayuda
Ir al contenido

Dialnet


Deep crustal structure across a young passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment) – I. Gulf of Lion’s margin

  • Autores: Alexandra Afilhado, Maryline Moulin, Daniel Aslanian
  • Localización: Bulletin de la Société Géologique de France, ISSN 0037-9409, Vol. 186, Nº. 4-5, 2015, págs. 309-330
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The conjugate margins system of the Gulf of Lion and West Sardinia (GLWS) represents a unique natural laboratory for addressing fundamental questions about rifting due to its landlocked situation, its youth, its thick sedimentary layers, including prominent palaeo-marker such as the MSC event, and the amount of available data and multidisciplinary studies. The main goals of the SARDINIA experiment, were to (i) investigate the deep structure of the entire system within the two conjugate margins: the Gulf of Lion and West Sardinia, (ii) characterize the nature of the crust, and (iii) define the geometry of the basin and provide important constrains on its genesis. This paper presents the results of P-wave velocity modelling on three coincident near-vertical reflection multi-channel seismic (MCS) and wide-angle seismic profiles acquired in the Gulf of Lion, to a depth of 35 km. A companion paper [part II – Afilhado et al., 2015] addresses the results of two other SARDINIA profiles located on the oriental conjugate West Sardinian margin.

      Forward wide-angle modelling of both data sets confirms that the margin is characterised by three distinct domains following the onshore unthinned, 33 km-thick continental crust domain: Domain I is bounded by two necking zones, where the crust thins respectively from ~30 to 20 and from 20 to 7 km over a width of about 170 km; the outermost necking is imprinted by the well-known T-reflector at its crustal base; Domain II is characterised by a 7 km-thick crust with « anomalous » velocities ranging from 6 to 7.5 km/s; it represents the transition between the thinned continental crust (Domain I) and a very thin (only 4–5 km) “atypical” oceanic crust (Domain III). In Domain II, the hypothesis of the presence of exhumed mantle is falsified by our results: this domain may likely consist of a thin exhumed lower continental crust overlying a heterogeneous, intruded lower layer. Moreover, despite the difference in their magnetic signatures, Domains II and III present the very similar seismic velocities profiles, and we discuss the possibility of a connection between these two different domains.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno