Argentina
This paper raises the question under what circumstances a plurality forms a set. My main point is that not always all things form sets. A provocative way of presenting my position is that, as a result of my approach, there are more pluralities than sets. Another way of presenting the same thesis claims that there are ways of talking about objects that do not always collapse into sets. My argument is related to expressive powers of formal languages. Assuming classical logic, I show that if all plurality form a set and the quantifiers are absolutely general, then one gets a trivial theory. So, by reductio, one has to abandon one of the premiss. Then, I argue against the collapse of the pluralities into sets. What I am advocating is that the thesis of collapse limits important applications of the plural logic in model theory, when it is assumed that the quantifiers are absolutely general.
Este artigo trata da questão sobre quais as circunstâncias em que uma pluralidade forma um conjunto. Meu ponto principal é que nem sempre todas as coisas formam conjuntos. Um a maneira provocativa de apresentar minha posição é que, como um resultado de minha abordagem, existem mais pluralidades do que conjuntos. Outra maneira de apresentar a mesma tese afirma que existem maneiras de falar de objetos que nem sempre colapsam em conjuntos. Meu argumento está relacionado com o poder expressivo de linguagens formais. Assumindo a lógica clássica, mostro que se toda pluralidade forma um conjunto e os quantificadores são absolutamente gerais, então obtemos uma teoria trivial. Portanto, por reduction, devemos abandonar uma das premissas. Então, argumento contra o colapso de pluralidades em conjuntos. O que estou advogando é que a tese do colapso limita importantes aplicações da lógica plural na teoria de modelos, quando é assumido que os quantificadores são absolutamente gerais.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados