Ayuda
Ir al contenido

Dialnet


On numerical equivalence for algebraic cobordism

    1. [1] KAIST, Daejeon, Corea del Sur
  • Localización: Journal of pure and applied algebra, ISSN 0022-4049, Vol. 220, Nº 1 (January 2016), 2016, págs. 435-464
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We define and study the notion of numerical equivalence on algebraic cobordism cycles. We prove that algebraic cobordism modulo numerical equivalence is a finitely generated module over the Lazard ring, and it reproduces the Chow group modulo numerical equivalence. We show this theory defines an oriented Borel–Moore homology theory on schemes and oriented cohomology theory on smooth varieties.

      We compare it with homological equivalence and smash-equivalence for cobordism cycles. For the former, we show that homological equivalence on algebraic cobordism is strictly finer than numerical equivalence, answering negatively the integral cobordism analogue of the standard conjecture (D). For the latter, using Kimura finiteness on cobordism motives, we partially resolve the cobordism analogue of a conjecture by Voevodsky on rational smash-equivalence and numerical equivalence.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno