Yingying Su, Dayong Liu, Yi Liu, Chunmei Zhang, Songlin Wang, Jinsong Wang
Background: Many invading oral bacteria are known to produce considerable amounts of hydrogen sulfide (H2S). The toxic activity of exogenous H2S in periodontal tissue has been demonstrated, but the role of endogenous H2S in the physiologic function of periodontal tissue remains poorly understood. The purpose of the present study is to investigate the biologic functions of H2S in the proliferation and differentiation of human periodontal ligament stem cells (PDLSCs).
Methods: PDLSCs were isolated from periodontal ligament tissues of periodontally healthy volunteers or patients with periodontitis. Immunocytochemical staining, flow cytometry, and Western blot analysis were used to examine the expression of H2S-synthesizing enzymes cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE). The proliferation capacity of PDLSCs was determined by cell counting kit-8 assay, carboxyfluorescein succinimidyl ester analysis, and 5-ethynyl-2′-deoxyuridine assay. The osteogenic potential of PDLSCs was tested using alkaline phosphatase staining, Alizarin Red staining, and in vivo transplantation experiments. Oil Red O staining was used to analyze adipogenic ability.
Results: The results show that human PDLSCs express both CBS and CSE and produce H2S. Blocking the generation of endogenous H2S with CBS inhibitor hydroxylamine significantly attenuated PDLSC proliferation and reduced the osteogenic and adipogenic differentiation capacity of PDLSCs. In contrast, CSE inhibitor dl-propargylglycine had no effect on PDLSC function. Exogenous H2S could inhibit the production of endogenous H2S and impair PDLSC function in a dose-dependent manner.
Conclusion: Physiologic levels of endogenous H2S maintain the proliferation and differentiation capacity of PDLSCs, and CBS may be the main source of endogenous H2S in PDLSCs.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados