Ayuda
Ir al contenido

Dialnet


Finite element approximation of the vibration problem for a Timoshenko curved rod

  • Autores: E. Hernández, E. Otárola, R. Rodríguez, F. Sanhueza
  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 49, Nº. 1, 2008, págs. 15-28
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The aim of this paper is to analyze a mixed finite element method for computing the vibration modes of a Timoshenko curved rod with arbitrary geometry. Optimal order error estimates are proved for displacements and rotations of the vibration modes, as well as a double order of convergence for the vibration frequencies. These estimates are essentially independent of the thickness of the rod, which leads to the conclusion that the method is locking free. A numerical test is reported in order to assess the performance of the method.

Los metadatos del artículo han sido obtenidos de SciELO Argentina

Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno