Ayuda
Ir al contenido

Dialnet


Bifurcation theory applied to the analysis of power systems

  • Autores: Gustavo Revel, D. M. Alonso, Jorge L. Moiola
  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 49, Nº. 1, 2008, págs. 1-14
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, several nonlinear phenomena found in the study of power system networks are described in the context of bifurcation theory. Toward this end, a widely studied 3-bus power system model is considered. The mechanisms leading to static and dynamic bifurcations of equilibria as well as a cascade of period doubling bifurcations of periodic orbits are investigated. It is shown that the cascade verifies the Feigenbaum's universal theory. Finally, a two parameter bifurcation analysis reveals the presence of a Bogdanov-Takens codimension-two bifurcation acting as an organizing center for the dynamics. In addition, evidence on the existence of a complex global phenomena involving homoclinic orbits and a period doubling cascade is included.

Los metadatos del artículo han sido obtenidos de SciELO Argentina

Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno