Ayuda
Ir al contenido

Dialnet


Resumen de Spaces of generalized splines over T-meshes

Cesare Bracco, Fabio Roman

  • We consider a class of non-polynomial spaces, namely a noteworthy case of Extended Chebyshev spaces, and we generalize the concept of polynomial spline space over T-mesh to this non-polynomial setting: in other words, we focus on a class of spaces spanned, in each cell of the T-mesh, both by polynomial and by suitably-chosen non-polynomial functions, which we will refer to as generalized splines over T-meshes. For such spaces, we provide, under certain conditions on the regularity of the space, a study of the dimension and of the basis, based on the notion of minimal determining set, as well as some results about the dimension of refined and merged T-meshes. Finally, we study the approximation power of the just constructed spline spaces.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus