Ayuda
Ir al contenido

Dialnet


Resumen de On $\alpha$-Short Modules

M. Davoudian, O. A. S. Karamzadeh, N. Shirali

  • We introduce and study the concept of $\alpha$-short modules (a $0$-short module is just a short module, i.e., for each submodule $N$ of a module $M$, either $N$ or $\frac{M}{N}$ is Noetherian). Using this concept we extend some of the basic results of short modules to $\alpha$-short modules. In particular, we show that if $M$ is an $\alpha$-short module, where $\alpha$ is a countable ordinal, then every submodule of $M$ is countably generated. We observe that if $M$ is an $\alpha$-short module then the Noetherian dimension of $M$ is either $\alpha$ or $\alpha+1$. In particular, if $R$ is a semiprime ring, then $R$ is $\alpha$-short as an $R$-module if and only if its Noetherian dimension is $\alpha$.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus