Ayuda
Ir al contenido

Dialnet


Resumen de Regulation of mitochondrial morphology and function by stearoylation of TFR1

Deniz Senyilmaz, Sam Virtue, Xiaojun Xu, Chong Yew Tan, Julian L. Griffin, Aubry K. Miller, Antonio Vidal Puig, Aurelio A. Teleman

  • Mitochondria are involved in a variety of cellular functions, including ATP production, amino acid and lipid biogenesis and breakdown, signalling and apoptosis1,2,3. Mitochondrial dysfunction has been linked to neurodegenerative diseases, cancer and ageing4. Although transcriptional mechanisms that regulate mitochondrial abundance are known5, comparatively little is known about how mitochondrial function is regulated. Here we identify the metabolite stearic acid (C18:0) and human transferrin receptor 1 (TFR1; also known as TFRC) as mitochondrial regulators. We elucidate a signalling pathway whereby C18:0 stearoylates TFR1, thereby inhibiting its activation of JNK signalling. This leads to reduced ubiquitination of mitofusin via HUWE1, thereby promoting mitochondrial fusion and function. We find that animal cells are poised to respond to both increases and decreases in C18:0 levels, with increased C18:0 dietary intake boosting mitochondrial fusion in vivo. Intriguingly, dietary C18:0 supplementation can counteract the mitochondrial dysfunction caused by genetic defects such as loss of the Parkinson’s disease genes Pink or Parkin in Drosophila. This work identifies the metabolite C18:0 as a signalling molecule regulating mitochondrial function in response to diet.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus