A identificação de relações semânticas, expressas entre entidades mencionadas em textos, é um passo importante para a extracção automática de conhecimento a partir de grandes colecções de documentos, tais como a Web. Vários trabalhos anteriores abordaram esta tarefa para o caso da língua inglesa, usando técnicas de aprendizagem automática supervisionada para classificação de relações, sendo que o actual estado da arte recorre a métodos baseados em string kernels. No entanto, estas abordagens requerem dados de treino anotados manualmente para cada tipo de relação, além de que os mesmos têm problemas de escalabilidade para as dezenas ou centenas de diferentes tipos de relações que podem ser expressas. Este artigo discute uma abordagem com supervisão distante para a extracção de relações de textos escritos em português, a qual usa uma técnica eficiente para a medição de similaridade entre exemplares de relações, baseada em valores mínimos de dispersão (i.e., min-hashing) e em dispersão sensível à localização (i.e., Locality-Sensitive Hashing). No método proposto, os exemplos de treino são recolhidos automaticamente da Wikipédia, correspondendo a frases que expressam relações entre pares de entidades extraídas da DBPédia. Estes exemplos são representados como conjuntos de tetragramas de caracteres e de outros elementos representativos, sendo os conjuntos indexados numa estrutura de dados que implementa a ideia da dispersão sensível à localização. Procuram-se os exemplos de treino mais similares para verificar qual a relação semântica que se encontra expressa entre um determinado par de entidades numa frase, com base numa aproximação ao coeficiente de Jaccard obtida por min-hashing. A relação é atribuída por votação ponderada, com base nestes exemplos. Testes com um conjunto de dados da Wikipédia comprovam a adequabilidade do método proposto, tendo sido extraídos 10 tipos diferentes de relações, 8 deles assimétricos, com uma pontuação média de 55.6% em termos da medida F1.
The identification of semantic relationships, as expressed between named entities in text, is an important step for extracting knowledge from large document collections, such as the Web. Previous works have addressed this task for the English language through supervised learning techniques for automatic classification. The current state of the art involves the use of learning methods based on string kernels. However, such approaches require manually annotated training data for each type of semantic relationship, and have scalability problems when tens or hundreds of different types of relationships have to be extracted. This article discusses an approach for distantly supervised relation extraction over texts written in the Portuguese language, which uses an efficient technique for measuring similarity between relation instances, based on minwise hashing and on locality sensitive hashing. In the proposed method, the training examples are automatically collected from Wikipedia, corresponding to sentences that express semantic relationships between pairs of entities extracted from DBPedia. These examples are represented as sets of character quadgrams and other representative elements. The sets are indexed in a data structure that implements the idea of locality-sensitive hashing. To check which semantic relationship is expressed between a given pair of entities referenced in a sentence, the most similar training examples are searched, based on an approximation to the Jaccard coefficient, obtained through min-hashing. The relation class is assigned with basis on the weighted votes of the most similar examples. Tests with a dataset from Wikipedia validate the suitability of the proposed method, showing, for instance, that the method is able to extract 10 different types of semantic relations, 8 of them corresponding to asymmetric relations, with an average score of 55.6%, measured in terms of F1.
A identificação de relações semânticas, expressas entre entidades mencionadas em textos, é um passo importante para a extracção automática de conhecimento a partir de grandes colecções de documentos, tais como a Web. Vários trabalhos anteriores abordaram esta tarefa para o caso da língua inglesa, usando técnicas de aprendizagem automática supervisionada para classificação de relações, sendo que o actual estado da arte recorre a métodos baseados em string kernels. No entanto, estas abordagens requerem dados de treino anotados manualmente para cada tipo de relação, além de que os mesmos têm problemas de escalabilidade para as dezenas ou centenas de diferentes tipos de relações que podem ser expressas. Este artigo discute uma abordagem com supervisão distante para a extracção de relações de textos escritos em português, a qual usa uma técnica eficiente para a medição de similaridade entre exemplares de relações, baseada em valores mínimos de dispersão (i.e., min-hashing) e em dispersão sensível à localização (i.e., Locality-Sensitive Hashing). No método proposto, os exemplos de treino são recolhidos automaticamente da Wikipédia, correspondendo a frases que expressam relações entre pares de entidades extraídas da DBPédia. Estes exemplos são representados como conjuntos de tetragramas de caracteres e de outros elementos representativos, sendo os conjuntos indexados numa estrutura de dados que implementa a ideia da dispersão sensível à localização. Procuram-se os exemplos de treino mais similares para verificar qual a relação semântica que se encontra expressa entre um determinado par de entidades numa frase, com base numa aproximação ao coeficiente de Jaccard obtida por min-hashing. A relação é atribuída por votação ponderada, com base nestes exemplos. Testes com um conjunto de dados da Wikipédia comprovam a adequabilidade do método proposto, tendo sido extraídos 10 tipos diferentes de relações, 8 deles assimétricos, com uma pontuação média de 55.6% em termos da medida F1.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados