Ayuda
Ir al contenido

Dialnet


Bulk universality for deformed Wigner matrices

    1. [1] Harvard University

      Harvard University

      City of Cambridge, Estados Unidos

    2. [2] KAIST
    3. [3] IST Austria
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 44, Nº. 3, 2016, págs. 2349-2425
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We consider N×N random matrices of the form H=W+V where W is a real symmetric or complex Hermitian Wigner matrix and V is a random or deterministic, real, diagonal matrix whose entries are independent of W. We assume subexponential decay for the matrix entries of W, and we choose V so that the eigenvalues of W and V are typically of the same order. For a large class of diagonal matrices V, we show that the local statistics in the bulk of the spectrum are universal in the limit of large N.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno