Ayuda
Ir al contenido

Dialnet


On the difficulty of preserving monotonicity via projections and related results

    1. [1] University of Northern Iowa

      University of Northern Iowa

      City of Cedar Falls, Estados Unidos

  • Localización: Jaen journal on approximation, ISSN 1889-3066, ISSN-e 1989-7251, Vol. 2, Nº. 1, 2010, págs. 1-12
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • A subspace V of a Banach space X is said to be complemented if there exists a (bounded) projection mapping X onto V . Obviously all subspaces of finitedimension are complemented. The goal of this note is to show that there are (relatively) few monotonically complemented subspaces of finite-dimension in X = (C[a, b], ·∞); that is, finite-dimensional subspaces V ⊂ X for which there exists a projection P : X → V such that P f is monotone-increasing whenever f is. We obtain several corollaries from this consideration, including a result describing the difficulty of preserving n-convexity via a projection.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno