Ayuda
Ir al contenido

Dialnet


Resumen de Liquid Jet Instability and Atomization in a Coaxial Gas Stream

Juan C. Lasheras, E. J. Hopfinger

  • An overview of the near and far-field breakup and atomization of a liquid jet by a high speed annular gas jet is presented. The various regimes of liquid jet breakup are discussed in the parameter space of the liquid Reynolds number, the aerodynamic Weber number, and the ratio of the momentum fluxes between the gas and the liquid streams. Recent measurements of the gas-liquid interfacial instabilities are reviewed and used to analyze the underlying physical mechanisms involved in the primary breakup of the liquid jet. This process is shown to consist of the periodic stripping of liquid sheets, or ligaments, which subsequently break up into smaller lumps or drops. Models to predict the liquid shedding frequency, as well as the global parameters of the spray such as the liquid core length and spray spreading angle are discussed and compared with the experiments. The role of the secondary liquid breakup on the far-field atomization of the liquid jet is also considered, and an attempt is made to apply the classical turbulent breakup concepts to explain qualitatively the measurement of the far-field droplet size distribution and its dependence on the liquid to gas mass and momentum flux ratios. Models for the droplet breakup frequency in the far-field region of the jet, and for the daughter-size probability density function, which account for the effect of the liquid loading on the local turbulent dissipation rate in the gas, are discussed in the context of the statistical description of the spray in the far field. The striking effect of the addition of swirl in the gas stream is also examined.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus