Ayuda
Ir al contenido

Dialnet


A statistical learning based approach for parameter fine-tuning of metaheuristics

    1. [1] University of Portsmouth

      University of Portsmouth

      Southsea, Reino Unido

    2. [2] Universitat Politècnica de Catalunya

      Universitat Politècnica de Catalunya

      Barcelona, España

    3. [3] UOC
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 40, Nº. 1, 2016, págs. 201-224
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Metaheuristics are approximation methods used to solve com binatorial optimization problems.

      Their performance usually depends on a set of parameters tha t need to be adjusted. The selection of appropriate parameter values causes a loss of efficiency, as it requires time, and advanced analytical and problem-specific skills. This paper provide s an overview of the principal approaches to tackle the Parameter Setting Problem, focusing on the sta tistical procedures employed so far by the scientific community. In addition, a novel methodolog y is proposed, which is tested using an already existing algorithm for solving the Multi-Depot V ehicle Routing Problem


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno