Ayuda
Ir al contenido

Dialnet


Resumen de Machine motion equations

Florian Ion Tiberiu Petrescu, Relly Victoria Virgil Petrescu

  • This paper presents the dynamic, original, machine motion equations. The equation of motion of the machine that generates angular speed of the shaft (which varies with position and rotation speed) is deduced by conservation kinetic energy of the machine. An additional variation of angular speed is added by multiplying by the coefficient dynamic D (generated by the forces out of mechanism and or by the forces generated by the elasticity of the system). Kinetic energy conservation shows angular speed variation (from the shaft) with inertial masses, while the dynamic coefficient introduces the variation of w with forces acting in the mechanism. Deriving the first equation of motion of the machine one can obtain the second equation of motion dynamic. From the second equation of motion of the machine it determines the angular acceleration of the shaft. It shows the distribution of the forces on the mechanism to the internal combustion heat engines. Dynamic, the velocities can be distributed in the same way as forces. Practically, in the dynamic regimes, the velocities have the same timing as the forces. Calculations should be made for an engine with a single cylinder. Originally exemplification is done for a classic distribution mechanism, and then even the module B distribution mechanism of an Otto engine type.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus