Ayuda
Ir al contenido

Dialnet


Mercuric chloride-induced alterations in stress protein distribution in rat kidney

    1. [1] Università degli Studi di Brescia

      Università degli Studi di Brescia

      Brescia, Italia

    2. [2] stituto Zooprofilattico Sperimentale della Lombardia ed Emilia-Romagna, Brescia, Italy
  • Localización: Histology and histopathology: cellular and molecular biology, ISSN-e 1699-5848, ISSN 0213-3911, Vol. 19, Nº. 4, 2004, págs. 1209-1218
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Mercuric chloride (HgCl2) induces acute renal failure associated to tubular impairment in experimental animals and humans. Stress proteins are a superfamily of proteins, comprising heat- shock proteins (HSP) and glucose-regulated proteins (GRP), enhanced or induced in the kidney in response to stress. They act as molecular chaperones that protect organelles and repair essential proteins which have been denatured during adverse conditions. The involvement of stress proteins in mercury-nephrotoxicity has not yet been well clarified. This study was undertaken to detect the tubular distribution of four stress proteins (HSP25, HSP60, GRP75, HSP72) in the rat kidney injected with HgCl2 and to quantify lysosomal and mitochondrial changes in straight proximal tubules, the main mercury target. Sprague-Dawley rats were administered i.p. with progressive sublethal doses of HgCl2 (0.25 mg/kg, 0.5 mg/kg, 1 mg/kg and 3.5 mg/kg) or saline (as controls) and sacrificed after 24 h. In dosages over 0.50 mg/kg, stress proteins increased and changed localization in a dose-dependent manner. HSP25 was focally expressed in altered proximal tubules at 1 mg/kg but in the macula densa it was at 3.5 mg/kg. HSP60 and GRP75 were intense in the nucleus and cytoplasm of proximal tubules but moderate in distal tubules. HSP72 was induced in distal tubules after low exposures but in proximal tubules it happened at the highest dose. Moreover, a significant increase in lysosomal and total mitochondria (normal and with broken cristae) area and density were progressively found after HgCl2 treatments. Stress proteins could represent sensitive biomarkers that strongly correlate with the degree of oxidative injury induced by HgCl2 in the rat proximal tubules.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno