Ayuda
Ir al contenido

Dialnet


Resumen de Pronóstico de caudales medios mensuales del rio ilave usando modelos de redes neuronales artificiales

Efrain Lujano Laura, Apolinario Lujano Laura, José Pitágoras Quispe, Rene Lujano Laura

  • ResumenLa presente investigación se realizó en la cuenca del río Ilave, ubicado dentro de la región Hidrográfica del Titicaca (Perú), teniendo como objetivo pronosticar los caudales medios mensuales del rio Ilave usando Modelos de Redes Neuronales Artificiales, aplicado al problema del pronóstico mensual de esta variable, cuyo resultado puede emplearse en la planificación y gestión de los recursos hídricos en cuencas hidrográficas. La información hidrometeorológica utilizada, corresponde al Servicio Nacional de Meteorología e Hidrología con un periodo de registro de 1965 al 2007, de donde se plantearon 06 modelos que están en función de precipitaciones y caudales, cuya fase de entrenamiento, validación y prueba, se realizaron con el 70%, 15% y 15% del total de datos respectivamente, con una red de entrenamiento designada Perceptrón Multicapa (MLP) y el algoritmo «back-propagatión». La significación estadística de los indicadores de desempeño de eficiencia de Nash-Sutcliffe (NSE) y la raíz del error cuadrático medio (RMSE), fueron evaluados usando el método de bootstrap incorporado en el código FITEVAL y como indicadores complementarios de evaluación tradicional, el coeficiente de determinación (R2) y el error cuadrático medio normalizado (ECMN). Los resultados de validación y prueba indican calificativos de buenos a muy buenos, así tenemos que en la fase de pronóstico para los modelos seleccionados MRNA5, MRNA2 y MRNA3, los coeficientes de Eficiencia de Nash-Sutcliffe son de 88.0%, 87.9% y 87.1%; la raíz del error medio cuadrático son de 18.87%, 18.96% y 19.56% respectivamente. Se concluye que el pronóstico de caudales medios mensuales del río Ilave utilizando modelos de Redes Neuronales Artificiales, muestran un buen desempeño en la estimación de fenómenos de comportamiento no lineal como los caudales.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus