Giuseppe Cannella, Dina Shona Laila, Christopher Thomas Freeman
In this paper, a novel design of a non-powered orthosis for upper limb stroke rehabilitation is reported. Its design exploits the gravity balancing theory. Designed for home-based use, it is the first affordable, passive design to incorporate an assistive level that can be adaptively varied within a closed-loop control scheme. This allows the device to be integrated with a dual robotic and electrical stimulation control scheme, to thereby enable full exploitation of the motor relearning principles which underpin both robotic therapy and Functional Electrical Stimulation (FES) based stroke rehabilitation. This embeds the potential for more effective treatment. The article focuses on the mechanical design of the non-powered orthosis, providing detailed design, dynamic analysis and evaluation.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados