Ayuda
Ir al contenido

Dialnet


Resumen de Neurophysiological effects of exercise

Selma Cirrik, Gülay Hacioglu

  • Convincing findings from animal and clinical studies have shown that exercise improves mood and cognition in addition to cardiovascular and metabolic benefits. Exercise, with the greatest effects on the hippocampus, which has a central role in learning and memory, increases neurogenesis and synaptic plasticity. Although the exact molecular mechanisms responsible for the exercise-induced neuroplasticity need to be clarified, some neurotrophic and angiogenic factors (e.g. BDNF, IGF-1, bFGF2 and VEGF) and different neurotransmitter systems (glutamate, GABA, endocannabinoids and monoamines) may have critical contributions in these processes. Exercise-induced changes in the brain morphology, chemistry and functions seem to be responsible for the beneficial effects of exercise, like improved learning and memory, anti-depressant-like and anxiolytic effects, reduced cognitive decline related to ageing and improvements in symptoms of neurodegenerative diseases. In this chapter, after discussing basic neurophysiological information regarding the brain, cognition, neurotransmitter systems, neural plasticity, learning, memory and behaviour tasks, the focus is on the exercise-induced changes in neuroplasticity, cognitive functions and mood and the factors mediating the effects of exercise, and finally, the effect of exercise on ageing and neurodegenerative diseases is discussed.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus