Ayuda
Ir al contenido

Dialnet


Numerical comparisons between Gauss-Legendre methods and Hamiltonian BVMs defined over Gauss points

  • Autores: Felice Iavernaro, Tiziana Susca
  • Localización: Monografías de la Real Academia de Ciencias Exactas, Físicas, Químicas y Naturales de Zaragoza, ISSN 1132-6360, Nº. 33, 2010, págs. 95-112
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Hamiltonian Boundary Value Methods are a new class of energy preserving one step methods for the solution of polynomial Hamiltonian dynamical systems. They can be thought of as a generalization of collocation methods in that they may be defined by imposing a suitable set of extended collocation conditions. In particular, in the way they are described in this note, they are related to Gauss collocation methods with the difference that they are able to precisely conserve the Hamiltonian function in the case where this is a polynomial of any high degree in the momenta and in the generalized coordinates. A description of these new formulas is followed by a few test problems showing how, in many relevant situations, the precise conservation of the Hamiltonian is crucial to simulate on a computer the correct behavior of the theoretical solutions.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno