Ayuda
Ir al contenido

Dialnet


Representation schemes and rigid maximal Cohen–Macaulay modules

    1. [1] Shriners Hospitals for Children - Salt Lake City

      Shriners Hospitals for Children - Salt Lake City

      Estados Unidos

    2. [2] Lawrence
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 23, Nº. 1, 2017, págs. 1-14
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Abstract Let k be an algebraically closed field and A be a finitely generated, centrally finite, nonnegatively graded (not necessarily commutative) k-algebra. In this note we construct a representation scheme for graded maximal Cohen–Macaulay A modules.

      Our main application asserts that when A is commutative with an isolated singularity, for a fixed multiplicity, there are only finitely many indecomposable rigid (i.e, with no nontrivial self-extensions) MCM modules up to shifting and isomorphism. We appeal to a result by Keller, Murfet, and Van den Bergh to prove a similar result for rings that are completion of graded rings. Finally, we discuss how finiteness results for rigid MCM modules are related to recent work by Iyama and Wemyss on maximal modifying modules over compound Du Val singularities.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno